Quantitative analysis of a subgradient-type method for equilibrium problems

نویسندگان

چکیده

Abstract We use techniques originating from the subdiscipline of mathematical logic called ‘proof mining’ to provide rates metastability and—under a metric regularity assumption—rates convergence for subgradient-type algorithm solving equilibrium problem in convex optimization over fixed-point sets firmly nonexpansive mappings. The is due H. Iiduka and I. Yamada who 2009 gave noneffective proof its convergence. This case study illustrates applicability logic-based abstract quantitative analysis general forms Fejér monotonicity as given by second author previous papers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid subgradient algorithm for nonexpansive mappings and equilibrium problems

We propose a strongly convergent algorithm for finding a common point in the solution set of a class of pseudomonotone equilibrium problems and the set of fixed points of nonexpansive mappings in a real Hilbert space. The proposed algorithm uses only one projection and does not require any Lipschitz condition for the bifunctions. AMS 2010 Mathematics subject classification: 65 K10, 65 K15, 90 C...

متن کامل

Equilibrium problems and fixed point problems for nonspreading-type mappings in hilbert space

In this paper by using the idea of mean convergence, weintroduce an iterative scheme for finding a common element of theset of solutions of an equilibrium problem and the fixed points setof a nonspreading-type mappings in Hilbert space. A strongconvergence theorem of the proposed iterative scheme is establishedunder some control conditions. The main result of this paper extendthe results obtain...

متن کامل

semi-analytical solution for static and forced vibration problems of laminated beams through smooth fundamental functions method

در این پایان نامه روش جدیدی مبتنی بر روش حل معادلات دیفرانسیل پارهای بر اساس روش توابع پایه برای حل مسایل ارتعاش اجباری واستاتیک تیرها و صفحات لایه ای ارایه شده است که می توان تفاوت این روش با روش های متداول توابع پایه را در استفاده از توابع هموار در ارضاء معادلات حاکم و شرایط مرزی دانست. در روش ارایه شده در این پایاننامه از معادله تعادل به عنوان معادله حاکم بر رفتار سیستم استفاده شده است که مو...

15 صفحه اول

Primal-Dual Subgradient Method for Huge-Scale Linear Conic Problems

In this paper we develop a primal-dual subgradient method for solving huge-scale Linear Conic Optimization Problems. Our main assumption is that the primal cone is formed as a direct product of many small-dimensional convex cones, and that the matrix A of corresponding linear operator is uniformly sparse. In this case, our method can approximate the primal-dual optimal solution with accuracy ε ...

متن کامل

Proximally Guided Stochastic Subgradient Method for Nonsmooth, Nonconvex Problems

In this paper, we introduce a stochastic projected subgradient method for weakly convex (i.e., uniformly prox-regular) nonsmooth, nonconvex functions—a wide class of functions which includes the additive and convex composite classes. At a high-level, the method is an inexact proximal point iteration in which the strongly convex proximal subproblems are quickly solved with a specialized stochast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Algorithms

سال: 2021

ISSN: ['1017-1398', '1572-9265']

DOI: https://doi.org/10.1007/s11075-021-01184-9